Construction 3: Book I, Proposition 3

Given two unequal straight lines, to cut off from the greater a straight line equal to the less.
I.3:4. Let AB, C be the two unequal straight lines, and let AB be the greater of them. \square
I.3:10. At the point A let AD be placed equal to the straight line C; [I.2]

WANTED

GOSUB I. 2 . Relabel points.
I.2:7. From the point a to the point b let the straight line $a b$ be joined; [Post.1]

I.2:9. and on it let the equilateral triangle dab be constructed. [I.1]

GOSUB I.1. Relabel points.
I.1:7. With centre a^{\prime} and distance a'b' let the circle b'g'd' be described; [Post.3]

I.1:10. again with centre b' and distance b'a' let the circle a'g'e' be described; [Post.3]

I.1:13. And from the point g,' in which the circles cut one another, to the points a^{\prime}, b^{\prime}, let the straight lines $g^{\prime}{ }^{\prime}$ ', $g^{\prime}{ }^{\prime}$ ' be joined.
[Post.1]
(First, a'g'.)

(Next, b'g'.)

Cleanup. Relabel points. RETURN to I. 2 at line 11.

I.2:11. Let the straight lines ae, bf be produced in a straight line with da, db;
(First, ae.)

(Next, bf.)

I.2:14. with centre b and distance bc let the circle cgh be described;

I.2:16. and again, with centre d and distance dg let the circle gkl be described. (The point 1 is where the new circle cuts de.).

The line al is equal to bc and is at a, so clean up.

RETURN to I. 3 at line 10.
Relabel 1 as D.

I.3:12. and with centre A and distance AD let the circle DEF be described. [Post.3] (The point E is determined by the crossing of DEF through AB.)

I.3:19. From AB the greater, AE has been cut off equal to C, the less.
Q.E.F.

