Construction 14B: Book I, Proposition 46

Alternate Construction

This is a short alternative to C\#14, which requires only 3 swings of the same compass. First we follow C\#14.

On a given straight line to describe a square.
I.46:2. Let AB be the given straight line.

A B

I.46:5. Let AC be drawn at right angles to the straight line $A B$ from the point A on it [I.11],

GOSUB I. 11
Extend AB , relabel.
I.11:8. Let a point d be taken at random on ac;

WANTED

I.11:10. let ce be made equal to cd; [I.3] (dividers)
I.11:11. on de let the equilateral triangle fde be constructed, [I.1]

GOSUB I.1.
Relabel.

I.1:7. with centre a' and distance a'b' let the circle b'g'd' be described; [Post. 3]
I.1:10. again, with centre b' and distance b'a' let the circle a'g'e' be described; [Post. 3]

I.1:13. and from the point g^{\prime}, in which the circles cut one another, to the points a^{\prime}, b^{\prime}, let the straight lines $g^{\prime} a^{\prime}, g^{\prime} b^{\prime}$ be joined.
(These two lines are not really necessary.)

RETURN to I. 11 at line 11. Relabel.
I.11:13. and let fc be joined.

RETURN to I. 46 at line 5.
Cleanup, relabel.

I.46:7. and let AD be made equal to AB ; ([I.3], dividers)

Let the circle with centre B and distance BA be described. (Swing the old arm.)

Let the circle with centre D and distance DA be described. (Swing the new arm.)

Connect the crossing point E to the two centres.

Cleanup and we are finished in 9 steps, in place of the 16 of $\mathrm{C} \# 14$.

It remains to prove that this is a square!.

