Construction 16: Book II, Proposition 14

To construct a square equal to a given rectilineal figure.

Note: Like C\#14 from I.45, this is a compound construction. Euclid proceeds in two steps.

1. To construct a rectangle equal to a given rectilineal figure.

This is a special case of C\#14, in which the given rectilineal angle is a right angle (54 steps!)
2. To construct a square equal to a given rectangle. (10 steps.)

We are going to carry out step 2 only. This is the essential construction here, as far as geometric algebra is concerned. See Heath v.1, p. 40.

II.14:5. The rectangular parallelogram BD...
I.14:10. one of the straight lines BE, ED is greater. Let BE be greater,

II.14:11. and let it be produced to F ; (F is not yet fixed)

II.14:12. let EF be made equal to ED, (I.3, rope trick, or dividers)

II.14:12. and let BF be bisected at G. ([I.10])

GOSUB I.10.
Actually, we will use the shortcut, C\#5B.

With centre B and distance BF...

With centre F and distance FB...

Connect crossings, mark the bisection point.

Cleanup.
RETURN to II. 14 at line 12.

II.14:13.. With centre G and distance one of the straight lines GB, GF, let the semicircle BHF be described;
(H is not exactly located yet.)

II.14:14. let DE be produced to H,

II.14:28. The rectangle contained by BE, EF which remains is equal to the square on EH .

GOSUB C\#14B, three circle method.

Set the compass to the distance EH. Swing the first circle around the corner, E.

Extend EF to meet the circle at the new end, J

Swing the second circle around the old end, H .

Swing the third circle around the new end, J.

Connect the crossing of the circles around the ends, K, to the ends, H, J.

QEF

Cleanup. We are done.

