Construction 43: Book VI, Proposition 13

To two given straight lines to find a mean proportional.
VI.13:2. Let AB, BC be the two given straight lines;

VI:13:5. . Let them be placed in a straight line,

VI.13:6. and let the semicircle ADC be described on AC; ([I.10])

GOSUB I.10, C\#5B.
Retain current labels.

WANTED

I.1:7. With centre A and distance AC let the circle CEF be described;

I.1:10. again, with centre C and distance CA let the circle AEG be described;

Connect the two crossing points, and mark the point H .

Cleanup. RETURN to VI.13:6.

VI.13:6. and let the semicircle ADC be described on AC (with centre H and distance AH);

VI:13:8. let BD be drawn from the point B at right angles to the straight line AC, ([I.11])

GOSUB I.11, C\#6.
Retain current labels.

I.11:10. let BE be made equal to BC;
I.11:11. on CE let the equilateral triangle FEC be constructed [I.1]

GOSUB I.1, C\#1.
Retain current labels.

I.1:7. With centre E and distance EC let the circle ... be described;
I.1:10. again, with centre C and distance CE let the circle ... be described;

The upper crossing point determines the location of the point F .

I.11:13. and let FB be joined; Extend this straight line as necessary to meet the semicircle ACD, thus determining the location of the point D .

Cleanup.

RETURN to VI.13:8.

VI:13:10. and let AD, BC be joined.

VI.13:17. Therefore to the two given straight lines $A B, B C$ a mean proportional DB has been found.

$$
\mathrm{AB} \quad \mathrm{DB}
$$

DB \qquad BC \qquad

